Новости катод заряд

Петербургская группа "Катод" рассчитывает стать крупнейшим производителем аккумуляторов в России. Кроме передачи электронов, отрицательный заряд катода обусловлен свойствами вещества, из которого изготавливается катод. К катоду стремятся катионы, потому что он заряжен отрицательно и, согласно законам физики, разноименные заряды притягиваются.

Ученые разработали новый тип катода для аккумуляторов

Исследователи создали энергоемкий органический катод для аккумуляторов 3 июня 2019 801 Ученые из Сколтеха, ИПХФ РАН и РХТУ создали новый полимерный катодный материал на основе политрифениламина, который может быть использован при создании быстрозаряжаемых металл-ионных аккумуляторов нового поколения. Результаты исследований опубликованы в Journal of Material Chemistry A. Ru, слова одного из соавторов статьи, аспиранта Сколтеха Филиппа Обрезкова. Несмотря на то, что литий-ионные аккумуляторы на основе неорганических материалов занимают доминирующее положение на рынке, дальнейшее улучшение их рабочих характеристик затруднено, так как в их составе используются тяжелые элементы, ограничивающие удельные электрохимические емкости материалов.

В итоге происходит короткое замыкание, устройство возгорается и приходит в негодность, что влечет за собой не только финансовые потери, но и угрозу человеческой жизни, если взрыв происходит, например, в автомобиле.

Сейчас существует несколько способов решения этой проблемы. Часто на аккумуляторе устанавливают выключатель, который реагирует на рост температуры и предотвращает перегревание батареи. Однако такая система может слишком поздно выявить неполадки. В этом случае возгорания не произойдет и техника уцелеет, но аккумулятор спасти не удастся.

К тому же выключатель значительно увеличивает размеры конечного изделия. Другой метод борьбы с короткими замыканиями — нанесение на катод терморезисторного слоя. Этот процесс требует перестройки производства и специального оборудования, что связано с большими затратами. Кроме того, технологию сложно адаптировать для изготовления аккумуляторов разных видов и размеров.

Идея нашей разработки в том, чтобы остановить короткое замыкание с помощью особой катодной массы.

Shraer et al. Российские ученые разработали катод для натрий-ионных аккумуляторов. Статья с описанием изобретения опубликована в Nature Communications. Современные аккумуляторы для телефонов и электромобилей изготавливаются с использованием лития. Этот металл добывается в ограниченном числе мест на Земле, и потому цена на него растет.

Об этом свидетельствуют данные лондонской биржи ICE. По состоянию на 9. Российская сторона неоднократно подчеркивала, что ограничение поставок обусловлено исключительно санкциями, из-за которых возникли проблемы с обслуживанием и ремонтом газоперекачивающих агрегатов Siemens. Сейчас работу магистрали обеспечивает только одна турбина.

3D-модель катода: о чём нам она говорит

  • Исследователи создали энергоемкий органический катод для аккумуляторов
  • Разработаны новые органические электродные материалы для калий-ионных аккумуляторов
  • Новый материал для батарей поможет электрокарам ездить дольше на одном заряде
  • Новый LMR-катод минимизирует падение напряжения в литий-ионных батареях

Российские ученые создали эффективную замену литию в аккумуляторах

Органические материалы, составляющие катод, в котором функциональные группы в ходе реакций заряда и разряда попеременно окисляются и восстанавливаются. Известно, что многослойные катоды LMR подвержены явлению, известному как «утечка напряжения», которое влечет за собой быстрый износ катодов и потерю заряда в батарее. Японская компания Taiheiyo Cement предложила использовать для изготовления катодов новый материал, который сократит зарядку аккумулятора в 3-4 раза. Катод это электрод, имеющий отрицательный заряд, а анод заряжен положительно. Исследователи из Сколтеха разработали инновационный материал для катодов литий-ионных батарей электротранспорта, который позволит увеличить пробег электрокаров на одной зарядке.

Химики впервые перезарядили тионилхлоридный аккумулятор

Исследователи из Сколтеха разработали инновационный материал для катодов литий-ионных батарей электротранспорта. Петербургская группа "Катод" рассчитывает стать крупнейшим производителем аккумуляторов в России. С целью избегания ошибок электроды таких деталей получили специальное название – анод и катод.

Группа "Катод" усиливает заряд

Редкий кадр: катод аккумулятора телефона под микроскопом в 3D Редкий кадр: катод аккумулятора телефона под микроскопом в 3D Nov 15, 2021 Технологии Учёные изучали комплектующие телефона под микроскопом и предоставили 3D-модель кобальтового катода литий-ионного аккумулятора, который используется в Айфонах и Андроид-смартфонах. Они рассмотрели, почему одни «батарейки» стареют быстрее, чем другие. Посмотрим, что у них вышло. Учёные сделали то, что уже давно нужно было сделать Сама идея посмотреть телефон под микроскопом приходит в голову немногим людям. Учёные же пошли дальше и воспользовались научными достижениями и прогрессом, чтобы снять аккумуляторный катод в 3D-проекции для форсирования дальнейших улучшений в литий-ионной технологии.

Cрок службы батареи 5-8 лет беспокоит производителей электромобилей [«Неудобная правда об электромобилях», Autonews ]. Учёные использовали сканирующий электронный микроскоп. Методом сфокусированного ионного пучка они обследовали положительный электрод просто купленного в магазине аккумулятора.

Температура больше не повышается, и аккумулятор возвращается в привычный режим работы», — рассказала капитан команды, магистрантка направления «Физика» Анна Никитенко.

Такой способ имеет ряд преимуществ. Его внедрение на предприятиях не потребует перестройки производственной цепочки и, следовательно, больших вложений. Помимо этого, новая катодная масса будет в каждом аккумуляторе устройства, в то время как, например, выключатель прикрепляется только к одному из них, и если нагревание батареи начнется не с него, то сигнал о неполадках придет с опозданием. Еще один плюс проекта состоит в том, что изменения в катоде не отразятся на размере исходного изделия, что упростит масштабирование технологии в производство.

Ребята планируют сотрудничать с производителями аккумуляторов для мобильных телефонов, бытовой техники и автомобилей, а также с изготовителями крупных промышленных батарей, например, для подводных лодок или электрокаров, предлагая предприятиям готовый продукт или лицензию на свою разработку. Студенты уже ведут переговоры с некоторыми компаниями. Команды, представившие самые наукоемкие и коммерчески перспективные бизнес-модели, получат денежные призы от эндаумент-фонда СПбГУ. Первое место принесет 300 000 рублей, второе — 200 000 рублей, а третье — 100 000 рублей.

Кроме того, двум победившим командам могут предложить создать совместно с Университетом малые инновационные предприятия.

Японская компания Taiheiyo Cement предложила использовать для изготовления катодов новый материал, который сократит зарядку аккумулятора в 3-4 раза. Читайте «Хайтек» в Представители компании отмечают, что зарядные устройства будут делать без использования кобальта и никеля. Частицы нового материала имеют диаметр не более 100 нанометров.

Благодаря этому ионы лития будут свободнее перемещаться в катоде.

Telegram В этом году отмечает 60-летний юбилей один из лидеров мировой оптики, единственное в России предприятие, освоившее серийный выпуск элементов, обеспечивающих высокое качество работы приборов ночного видения, — АО «Катод». Поздравляли юбиляра представители федеральных структур от администрации президента РФ до Совета Федерации РФ, государственной и муниципальной власти Новосибирской области, а также партнеры и потребители продукции из России, Белоруссии и Китая. Лучшие сотрудники «Катода» были отмечены грамотами и ценными подарками.

Бессменный руководитель предприятия Владимир Локтионов подвел итоги за прошедшие пять лет и озвучил планы на будущее. История «Катода» — это история развития наукоемкого бизнеса в России, который, несмотря на внутренние и внешние проблемы, все же достиг успеха и мирового признания. Очередной юбилей предприятия стал поводом оглянуться назад, чтобы еще раз вспомнить, из каких экономических глубин поднялся завод. Официальная дата регистрации ОКБ — 19 октября 1959 года.

В начале 90-х годов все рухнуло практически в одночасье. Не стало заказов, остановилось финансирование НИОКР — научно-исследовательских и опытно-конструкторских работ. От коллектива численностью почти 600 человек осталось всего 150. Мы стали искать направление, которое позволило бы коллективу поверить в себя и одновременно было бы перспективным».

Он пришел на «Катод» начальником группы по ремонту механических частей и оборудования. И до сих пор, несмотря на почтенный возраст — 73 года, продолжает здесь трудиться. Но руководство предприятия, в частности Владимир Ильич Локтионов, сумело найти правильный вектор развития. И у нас все получилось.

Предприятие стабильно работает, неплохие зарплаты, а главное — у нас очень интересная, творческая работа», — рассказал Лев Фридман. В середине 90-х «Катод» на свой страх и риск стал участником уникального проекта Российской академии наук по исследованию темной материи, для которого предприятие разработало фотоэлектронные умножители ФЭУ диаметром 350 мм. Это не удалось сделать ни Hamamatsu, ни Philips. ФЭУ «Катода» обеспечили функционирование возможно единственной в своем роде нейтринной обсерватории.

3D-модель катода: о чём нам она говорит

  • EMD: Ученые изготовили эффективные органические катоды для цинк-ионных батарей
  • Серебряно-цинковые
  • Редкий кадр: катод аккумулятора телефона под микроскопом в 3D
  • Долговечный катод / Новости Энерговектор
  • Последние новости:
  • Как устроена Li-ion ячейка?

Ученые создали долговечный катод для натрий-ионных аккумуляторов

В будущем исследователи планируют экспериментировать с размером частиц в надежде добиться еще лучших результатов в сфере повышения энергоемкости батарей. Ранее «Газета. Ru» рассказывала о том, что компания XPeng представила в Дубае летающий «электрокар». Поделиться: Подписывайтесь на «Газету.

Поэтому они являются перспективными для использования в гибридных энергетических системах и крупногабаритных аккумуляторах для электромобилей, где большое значение имеют цена и безопасность. С чем же связано улучшение мощностных характеристик электродных материалов, особенно с низкой электронно-ионной проводимостью, при повышении их дисперсности? Это приводит к ускорению ионного транспорта и, соответственно, процессов заряда-разряда в аккумуляторах. Меньшие по размеру частицы также лучше адаптируются к объемным изменениям в ходе внедрения и экстракции ионов лития, что способствует повышению структурной стабильности материалов. С увеличением дисперсности наблюдается и повышение электрохимической емкости. Особенность этого способа в том, что синтез наночастиц LiFePO4 из исходных реагентов идет параллельно с модифицированием поверхности этих частиц углеродом. В 2011 г.

В сфере литий-ионных аккумуляторов все происходит на удивление быстро. Так, кобальтат лития был предложен в качестве катодного материала в 1986 г. Синтезировать железо-фосфат лития сложнее, к тому же он выходил на уже имеющийся рынок, однако в данном случае от идеи до внедрения прошло не более десятка лет. И сразу же после этого многие автомобилестроительные компании, такие как Toyota, Renault, General Motors, Nissan и др. Сейчас разрабатываются новые виды литиевых аккумуляторов — литий-серные и литий-воздушные. При использовании кислорода воздуха в качестве катода плотность аккумулирования энергии может увеличиться в 5—10 раз! Рекордные значения удельной энергии и емкости, характерные для литий-воздушных аккумуляторов, а также низкая стоимость реагентов объясняют большой практический и экономический интерес к этой теме.

В последние годы в США на эти исследования тратятся миллиарды долларов, в России же это направление только начинает развиваться. Но самый удивительный вклад в разработку ЛИА собираются внести... Ученые из Массачусетского технологического института показали, что с помощью генетически модифицированных бактериофагов — вирусов, инфицирующих бактерии и безвредных для человека, — можно наладить процесс самосборки рабочих электродов литиевого аккумулятора. Сначала бактериофаги покрывают свою оболочку аморфным фосфатом железа, способным обратимо принимать и отдавать ионы лития, а затем селективно присоединяются к углеродным нанотрубкам, обладающим высокой электропроводностью Belcher, 2010. Аккумулятор, собранный на основе таких «вирусных» электродов с разветвленной структурой, продемонстрировал мощность и емкость на уровне самых современных аккумуляторов, а также стабильную работу как минимум при 100 циклах перезарядки. Производство такого литиевого аккумулятора обходится значительно дешевле, чем обычного аккумулятора, к тому же оно не требует использования токсичных химических веществ — все процессы идут в водной среде при комнатной температуре. Благодаря процессу самосборки электродам можно придать самую разнообразную форму еще на стадии синтеза, что позволит в будущем встраивать их в различные портативные электронные устройства.

И, судя по всему вышеизложенному, это будущее должно наступить очень скоро! Литература Avvakumov E.

В двухионных аккумуляторах, с которыми работали российские ученые, в электрохимических процессах участвуют не только катионы электролита то есть катионы лития , но и анионы, которые то встраиваются, то выходят из структуры катодного материала. За счёт этого двухионные аккумуляторы часто могут заряжаться быстрее, чем обычные литий-ионные. Кроме того, в работе была еще одна новация. В некоторых экспериментах ученые использовали не литий-содержащие электролиты, а калий-содержащие и так получали калиевые двухионные аккумуляторы, для работы которых не нужно дорогого лития. На их основе сделали катоды, а в качестве анодов использовали металлический литий и калий - все основные характеристики таких прототипов батарей, которые называются полуячейками, определяются катодной частью и ученые собирают их, чтобы быстро оценить возможности новых катодных материалов. PDPAPZ напротив оказался достаточно удачным материалом: литиевые полуячейки с этим полимером могли сравнительно быстро заряжаться и разряжаться, а также показали хорошую стабильность. Они сохраняли до трети своей ёмкости даже после 25 тысяч рабочих циклов - если бы обычный аккумулятор в телефоне обладал такой же стабильностью, то его можно было бы ежедневно заряжать и разряжать на протяжении 70 лет.

Статья, опубликованная в Nature Energy , раскрывает стратегии, которые предлагают потенциальные пути увеличения плотности энергии литий-ионных батарей. Увеличение диапазона электромобилей требует материалов для изготовления аккумуляторов, которые смогут хранить больший заряд при более высоких напряжениях, то есть необходимо достичь высокой «плотности энергии». Существует ограниченное количество способов увеличения плотности энергии литий-ионных катодных материалов.

Ученые разработали новый тип катода для аккумуляторов

Официальная дата регистрации ОКБ — 19 октября 1959 года. В начале 90-х годов все рухнуло практически в одночасье. Не стало заказов, остановилось финансирование НИОКР — научно-исследовательских и опытно-конструкторских работ. От коллектива численностью почти 600 человек осталось всего 150. Мы стали искать направление, которое позволило бы коллективу поверить в себя и одновременно было бы перспективным». Он пришел на «Катод» начальником группы по ремонту механических частей и оборудования. И до сих пор, несмотря на почтенный возраст — 73 года, продолжает здесь трудиться. Но руководство предприятия, в частности Владимир Ильич Локтионов, сумело найти правильный вектор развития.

И у нас все получилось. Предприятие стабильно работает, неплохие зарплаты, а главное — у нас очень интересная, творческая работа», — рассказал Лев Фридман. В середине 90-х «Катод» на свой страх и риск стал участником уникального проекта Российской академии наук по исследованию темной материи, для которого предприятие разработало фотоэлектронные умножители ФЭУ диаметром 350 мм. Это не удалось сделать ни Hamamatsu, ни Philips. ФЭУ «Катода» обеспечили функционирование возможно единственной в своем роде нейтринной обсерватории. Этот проект вдохновил катодовцев, помог поверить в себя и, пожалуй, предопределил выбор направления развития. Мы только знали, что Россия отстает в сфере разработки ЭОПов от развитых стран лет на 25.

По сути, наша армия в темноте была абсолютно беспомощна. В итоге мы опередили наших зарубежных коллег на несколько лет». ПНВ «Катода» стали меньше и легче, весили меньше килограмма. В первые годы предприятие выпускало 3—4 прибора в сутки, сегодня — 36.

В особенности заторможенной может быть передача электронов между катионами переходного металла и атомами кислорода, что как раз и приводит к энергетическим потерям», — рассказывает директор Центра энергетических технологий CEST Сколтеха профессор Артём Абакумов.

Мы убедительно показали отсутствие таких необратимых процессов с использованием просвечивающей электронной микроскопии высокого разрешения. Этот прибор обеспечивает пространственное разрешение до 0,06 нм, что позволяет получать изображения кристаллических структур с атомным разрешением», — отмечает аспирант Сколтеха Анатолий Морозов. В этой работе мы использовали не только изображения структур, но и смогли провести спектральный анализ электронного состояния катионов никеля и титана, а также анионов кислорода в разных состояниях заряда аккумулятора. Таким образом мы выяснили, что именно никель в высокой степени окисления является заторможенным электронным состоянием, что также нашло подтверждение при помощи других спектроскопических методик», — объясняет научный сотрудник Сколтеха Ольга Емельянова.

За счёт этого двухионные аккумуляторы часто могут заряжаться быстрее, чем обычные литий-ионные. Кроме того, в работе была еще одна новация. В некоторых экспериментах ученые использовали не литий-содержащие электролиты, а калий-содержащие и так получали калиевые двухионные аккумуляторы, для работы которых не нужно дорогого лития. На их основе сделали катоды, а в качестве анодов использовали металлический литий и калий - все основные характеристики таких прототипов батарей, которые называются полуячейками, определяются катодной частью и ученые собирают их, чтобы быстро оценить возможности новых катодных материалов.

PDPAPZ напротив оказался достаточно удачным материалом: литиевые полуячейки с этим полимером могли сравнительно быстро заряжаться и разряжаться, а также показали хорошую стабильность. Они сохраняли до трети своей ёмкости даже после 25 тысяч рабочих циклов - если бы обычный аккумулятор в телефоне обладал такой же стабильностью, то его можно было бы ежедневно заряжать и разряжать на протяжении 70 лет. Таким образом, российские ученые показали, что разработанные полимерные катодные материалы можно использовать для создания эффективных литиевых и калиевых двухионных аккумуляторов, сообщает пресс-служба Российского химико-технологического университета им.

Основным недостатком литий-ионной технологии, которая существует, считают высокую цену. В поисках альтернативы много усилий было приложено к созданию аккумуляторов, которые построены с использованием более доступных и менее дорогих элементов, например, калия вместо лития. Кобальт в составе катода можно заменить на материалы, которые намного экологичнее.

Это распространенные железо, марганец и титан.

«Катод»: трудно быть лидером

Статья, опубликованная в Nature Energy , раскрывает стратегии, которые предлагают потенциальные пути увеличения плотности энергии литий-ионных батарей. Увеличение диапазона электромобилей требует материалов для изготовления аккумуляторов, которые смогут хранить больший заряд при более высоких напряжениях, то есть необходимо достичь высокой «плотности энергии». Существует ограниченное количество способов увеличения плотности энергии литий-ионных катодных материалов.

В статье, опубликованной в журнале Nature Materials , показано, что различие в рабочем напряжении при заряде и разряде, приводящее к низкой энергоэффективности, связано с образованием кинетически заторможенных долгоживущих промежуточных состояний никеля. Развитие индустрии электротранспорта требует создания литий-ионных аккумуляторов с более высокой энергоёмкостью для того, чтобы обеспечить привлекательный для потребителя диапазон пробега. Тяговые батареи нового поколения могут быть созданы на основе перспективных катодных материалов, представляющих собой сложные оксиды лития и переходных металлов с избыточным содержанием лития. Такие материалы обеспечивают рекордную на сегодняшний день электрохимическую ёмкость за счёт участия в окислительно-восстановительных реакциях как катионов переходных металлов никель и кобальт , так и анионов кислорода. К сожалению, из-за разницы напряжений заряда и разряда гистерезис напряжения работа такого аккумулятора сопровождается потерями энергии, что создаёт препятствие для практического использования.

Среди их плюсов по сравнению с неорганическими материалами можно выделить высокую удельную энергоемкость, высокие скорости зарядки и разрядки, устойчивость к механическим деформациям, а также высокую экологичность — переработать их можно так же, как и обычный бытовой пластик. Более того, использование органических катодов позволяет полностью отказаться от использования дорогостоящих соединений лития, заменив их на дешевые соли натрия и калия. Поэтому нами была поставлена задача смоделировать и исследовать новые макромолекулы, потенциально обладающие более высокой энергоемкостью. Созданный нами новый материал продемонстрировал превосходные характеристики при плотностях тока до 200 С полный заряд и разряд аккумулятора происходит всего за 18 секунд.

Сегодня АО «Катод» — единственное в России и третье в мире предприятие, обладающее технологией крупносерийного производства ЭОП третьего новейшего поколения — главного элемента в приборах ночного видения как гражданского, так и военного назначения. Благодаря ЭОП последнего поколения приборы ночного видения позволяют видеть практически в полной темноте. Здесь работает порядка семи научных подразделений и лабораторий. Только за последние пять лет «Катод» провел более 20 научно-исследовательских и опытно-конструкторских работ. Они касались как улучшения параметров существующих приборов, так и создания совершенно новых изделий, которые раньше вообще не выпускались. От юбилея к юбилею Выступая на торжественном мероприятии в честь 60-летия компании, Владимир Локтионов рассказал об успехах «Катода» за последние пять лет. Предприятию есть чем гордиться. Гособоронзаказ выполнялсяв полном объеме и установленный срок. Качество изделий завода отменное — ни одного возврата товара от потребителей. В бюджеты всех уровней катодовцы заплатили более 2 млрд рублей налогов. Отдельно Владимир Локтионов остановился на инвестиционной составляющей бизнеса. Три года назад, в 2016 году, компания запустила новый производственный корпус общей площадью 6000 кв. Этот инвестиционный проект дал возможность увеличить мощности производства и повысить качество выпускаемой продукции. Это позволило внедрить 17 новейших разработок и приступить к вводу нового изделия в серийное производство. Конечно, сложностей в работе добавилось, но мы находим ресурсы для работы и в этих условиях. А то, что американское правительство ввело санкции против новосибирской компании, только подчеркивает, что в нас видят сильного конкурента», — отметил Владимир Локтионов. Первые заказы уже поступили. Успешную апробацию в ЦЕРНе Европейский центр ядерных исследований прошли опытные образцы последнего поколения фотоэлектронных умножителей. Мы были включены в перечень поставщиков в случае возможных проектов в этом направлении.

Новый материал катода ускорит зарядку литий-ионных батарей

«В рамках нашего текущего исследования мы проверили долгосрочную работу металлической батареи Ca с катодом из наночастиц сульфида меди (CuS). Заряд перестает передаваться по внешней цепи, оставаясь внутри аккумулятора. Вот казалось бы, только вчера мы начали работу над проектом Заряд. Электрохимические процессы в LiIon аккумуляторах При разряде элементов питания ионы лития переносят заряд от анода к катоду.

Похожие новости:

Оцените статью
Добавить комментарий