Новости из чего состоит водородная бомба

«взрывает» реакция неуправляемого термоядерного синтеза.

Водородная против атомной. Что нужно знать о ядерном оружии

Ядерная бомба — история появления ядерного оружия Но испытанная водородная «царь-бомба» смогла остановить наращивание их ядерного потенциала.
Презентация по физике на тему: "Термоядерные реакции. Водородная бомба" Испытание первой водородной бомбы на Семипалатинском полигоне.
Самая мощная бомба в мире. Какая бомба сильнее: вакуумная или термоядерная? Это достигается помещением в бомбу специального твердого соединения — дейтерида лития, который состоит из лития-6 и водорода-2.

«Ничего подобного у США не было»: какую роль в истории СССР сыграло появление водородного оружия

Из истории создания водородной бомбы в США и СССР. СССР начал разрабатывать термоядерную бомбу позднее: первая схема была предложена советскими разработчиками лишь в 1949 году. Иллюстрация взрыва водородной бомбы После взрыва в Хиросиме и Нагасаки, окончания Второй Мировой Войны, началась гонка между Америкой и СССР и мировое сообщество поняло, что мощнее ядерная или водородная бомба. Водородная бомба, известная также как Hydrogen Bomb или HB, — оружие невероятной разрушительной силы, чья мощность исчисляется мегатоннами в тротиловом эквиваленте.

60 лет назад водородная бомба помогла СССР достичь ядерного паритета с США

это все те же РДС-6с. История создания водородной бомбы содержит в себе маленький детективный сюжет, оказавший огромное влияние на жизнь двух американских физиков — Роберта Оппенгеймера и Эдварда Теллера. Соответственно, поскольку мы выбираем водородную бомбу в качестве отправной точки для разработки термоядерных реакторов — включая с трудом полученные физические знания, лежащие в основе бомбы, — необходимо найти замену спусковому механизму деления. «взрывает» реакция неуправляемого термоядерного синтеза. Эксперты называют В61-12 одной из наиболее точных термоядерных бомб, а сама она использует корректировку при помощи GPS, где для повышения точности задействуются хвостовые рули.

Водородная (термоядерная) бомба: испытания оружия массового поражения

Наконец, 30. Этот трехступенчатый боеприпас разрабатывался на самом деле как 101,5-мегатонная бомба, но стремление снизить радиоактивное заражение территории заставило разработчиков отказаться от третьей ступени мощностью в 50 мегатонн и снизить расчетную мощность устройства до 51,5 мегатонн. При этом 1,5 мегатонны составляла мощность взрыва первичного атомного заряда, а вторая термоядерная ступень должна была дать еще 50. Реальная мощность взрыва составила до 58 мегатонн. Внешний вид бомбы показан на фото ниже. Последствия его были впечатляющими. Несмотря на весьма существенную высоту взрыва в 4000 м, невероятно яркий огненный шар нижним краем почти достиг Земли, а верхним поднялся до высоты более 4,5 км. Давление ниже точки разрыва было в шесть раз выше пикового давления при взрыве в Хиросиме. Вспышка света была настолько яркой, что ее было видно на расстоянии 1000 километров, несмотря на пасмурную погоду. Один из участников теста увидел яркую вспышку через темные очки и почувствовал последствия теплового импульса даже на расстоянии 270 км.

Фото момента взрыва показано ниже. При этом было показано, что мощность термоядерного заряда действительно не имеет ограничений. Ведь достаточно было выполнить третью ступень, и расчетная мощность была бы достигнута. А ведь можно наращивать число ступеней и далее, так как вес «Царь-бомбы» составил не более 27 тонн. Вид этого устройства показан на фото ниже. После этих испытаний многим политикам и военным как в СССР, так и в США стало ясно, что наступил предел гонки ядерных вооружений и ее нужно остановить. Сегодня термоядерные бомбы России продолжают служить сдерживающим фактором для тех, кто стремится к мировой гегемонии. Будем надеяться, что они сыграют свою роль только в виде средства устрашения и никогда не будут взорваны. Водородная бомба Как было сказано ранее, принцип действия водородной бомбы основан на реакции синтеза.

Термоядерный синтез — это процесс слияния двух ядер в одно, с образованием третьего элемента, выделением четвертого и энергии. Силы, отталкивающие ядра, колоссальны, поэтому для того, чтобы атомы сблизилась достаточно близко для слияния, температура должна быть просто огромной. Ученые уже который век ломают голову над холодным термоядерным синтезом, так сказать пытаются сбросить температуру синтеза до комнатной, в идеале. В этом случае человечеству откроется доступ к энергии будущего. Что же до термоядерной реакции в настоящее время, то для ее запуска по-прежнему нужно зажигать миниатюрное солнце здесь на Земле — обычно в бомбах используют урановый или плутониевый заряд для старта синтеза. Водородная бомба Принцип действия Конструктив водородной бомбы сформирован на использовании энергии, выделяемой в процессе реакции термоядерного синтеза лёгких ядер. Аналогичный процесс происходит внутри звезды, где воздействие сверхвысоких температур вместе с гигантским давлением заставляют ядра водорода сталкиваться. На выходе образуются утяжелённые ядра гелия. В процессе часть массы водорода преображается в энергию исключительной силы.

Именно поэтому звёзды являются постоянными источниками энергии. Физики переняли схему деления, заменив изотопы водорода таким элементами, как дейтерий и тритий. Однако изделию всё равно дали название водородная бомба на основании базовой схемы. В ранних разработках ещё использовались жидкие изотопы водорода. Но впоследствии основным компонентом стал твёрдый дейтерий лития-6. Дейтерий лития-6 уже содержит тритий. Но чтобы его выделить, требуется создать пиковую температуру и грандиозное давление. Для этого под термоядерное горючее конструируется оболочка из урана-238 и полистирола. По соседству устанавливается небольшой ядерный заряд мощностью несколько килотонн.

Он служит триггером. При взрыве заряда оболочка урана переходит в плазменное состояние, создавая пиковую температуру и грандиозное давление. В процессе нейтроны плутония контактируют с литием-6, что позволяет выделяться тритию. Ядра дейтерия и лития коммуницируют, образуя термоядерный взрыв. Таков принцип действия водородной бомбы. Некоторые люди склонны считать, что водородная бомба — «более чистое оружие», чем обычная бомба. Возможно, это связано с названием. Люди слышат слово «водо» и думают, что это как-то связано с водой и водородом, а следовательно последствия не такие плачевные. На самом деле это конечно не так, ведь действие водородной бомбы основано на крайне радиоактивных веществах.

Теоретически возможно сделать бомбу без уранового заряда, но это нецелесообразно ввиду сложности процесса, поэтому чистую реакцию синтеза «разбавляют» ураном, для увеличения мощности. Все, что попадает в огненный шар, будет уничтожено, зона в радиусе поражения станет необитаемой для людей на десятилетия. Радиоактивные осадки могут нанести вред здоровью людей в сотнях и тысячах километров.

Докладчиком был Я. Фукса с советским разведчиком А. Теллера и Э. Однако А. Арзамас-16 Саров.

В этом постановлении, помимо конкретных мероприятий, предусматривалась командировка Я. Зельдовича для работы в КБ-11. Фукса с А. Среди переданных К. Фуксом материалов были новые теоретические сведения, относящиеся к сверхбомбе. Фукса в адрес И. Сталина, В. Молотова, Л.

Политическое руководство страны отнеслось к ним с большим вниманием, и уже 23 апреля Л. Берия поручил Б. Курчатову и Ю. Заключение и предложения главных специалистов были готовы 5 мая 1948 года. Предложения Б. Ванникова, И. Курчатова и Ю. В постановлении, в частности, ставилась задача проверить возможность создания водородной бомбы, которой был присвоен индекс РДС-6.

Берии материалы К. Фукса направляются в КБ-11 Ю. Харитону для использования в работе. Кроме Ю.

При нагревании дейтерия до температур в несколько десятков миллионов градусов его атому теряют свои электронные оболочки при первых же столкновениях с другими атомами. В результате этого среда оказывается состоящей лишь из протонов и движущихся независимо от них электронов. Скорость теплового движения частиц достигает таких величин, что ядра дейтерия могут сближаться и благодаря действию мощных ядерных сил соединяться друг с другом, образуя ядра гелия.

Результатом этого процесса и становится выделения энергии. Принципиальная схема водородной бомбы такова. Дейтерий и тритий в жидком состоянии помещаются в резервуар с теплонепроницаемой оболочкой, которая служит для длительного сохранения дейтерия и трития в сильно охлажденном состоянии для поддержания из жидкостного агрегатного состояния. Теплонепроницаемая оболочка может содержать 3 слоя, состоящих из твердого сплава, твердой углекислоты и жидкого азота. Вблизи резервуара с изотопами водорода помещается атомный заряд. При подрыве атомного заряда изотопы водорода нагреваются до высоких температур, создаются условия для протекания термоядерной реакции и взрыва водородной бомбы. Однако, в процессе создания водородных бомб было установлено, что непрактично использовать изотопы водорода, так как в таком случае бомба приобретает слишком большой вес более 60 т.

Второй проблемой, с которой столкнулись разработчики водородной бомбы была радиоактивность трития, которая делала невозможным его длительное хранение. В ходе исследования 2 вышеуказанные проблемы были решены. Жидкие изотопы водорода были заменены твердым химическим соединением дейтерия с литием-6. Это позволило значительно уменьшить размеры и вес водородной бомбы. Кроме того, гидрид лития был использован вместо трития, что позволило размещать термоядерные заряды на истребителях бомбардировщиках и баллистических ракетах. Создание водородной бомбы не стало концом развития термоядерного оружия, появлялись все новые и новые его образцы, была создана водородно- урановая бомба, а также некоторые ее разновидности — сверхмощные и, наоборот, малокалиберные бомбы. Последним этапом совершенствования термоядерного оружия стало создания так называемой «чистой» водородной бомбы.

Американские штабисты даже разработали планы «упреждающей войны» против СССР. Военные действия по плану «Троян» должны были начаться в 1950 г. Позже план скорректировали на 1957 год, для включения в него стран НАТО. Агрессивные планы остановили только первые испытания советского ядерного оружия. Советская ядерная программа До 1941 года советские ученые занимались теорией строения атомного ядра, цепной реакции, радиохимическими исследованиями без выхода на тему ядерного оружия. По ядерной физике проводились всесоюзные конференции, этой тематикой занимались ленинградские Радиевый институт, первый Физтех, харьковский физико-технический институт. Первым толчком к мыслям о военном применении атомного распада стало прекращение публикаций по физике ядра в научных журналах Германии, Великобритании, США. Немецкий физик Ф. Ланге, эмигрировавший в СССР 1935 г.

Еще в 1940 году Ланге и сотрудники его лаборатории В. Шпинель и В. Маслов подали Наркомату обороны СССР предложение о работах по «урановому боеприпасу», не получившее поддержки руководства. С началом войны объемы ядерных исследований были сокращены до минимума, лаборатории закрывались или эвакуировались. Советская разведка скопировала стенограмму английского «Комитета M. После этого ядерные исследования в СССР были засекречены, перед учеными были поставлены задачи разработки технологий очистки урана, разработке конструкции оружия. В этой программе были изучены методы бета-спектроскопии ядер, обнаружено ядерное деление под действием космического излучения, в импульсных количествах получен препарат плутония. Полная технология выделения плутония из облученного урана была разработана Радиевым институтом 1946 г. Хованский, Я.

Зильберман создали технологическую часть для строительства радиохимического завода. Руководителем советского атомного проекта стал И. В, Курчатов март 1943 г. До этого назначения сорокалетний ученый: был приглашен академиком А. Иоффе в ЛФТИ 1925 г. На первом этапе проекта 1943-1945 гг. Для этих работ Курчатов добился демобилизации из армии нужных специалистов. После американских взрывов практические работы резко ускорились. Были построены экспериментальный реактор на основе циклотрона, перевезенного из Ленинграда и рабочий реактор для получения оружейного плутония декабрь 1946 г.

Для получения изотопов урана использовалась газодиффузионная методика. На их основе в закрытой зоне «Комбинат 817» Озерск Челябинской области заработал промышленный реактор июнь 1948 г. Комбинат «Маяк» начал производство плутония по ацетатно-осадительной технологии, произвел оружейный плутоний в количестве, необходимом для первого испытания 1949 г. Одновременно были изобретены запалы для бомб на полоний-бериллиевых источниках. Правой рукой Курчатова в атомном проекте стал Ю. Под его научным руководством был построен и заработал секретный КБ-11 в закрытой зоне «Кремлев», «Арзамас-75», «Арзамас-16», Саров Нижегородской области. Игорь Васильевич Курчатов и Юлий Борисович Харитон на отдыхе в Семипалатинске Главный конструктор засекреченного КБ-11 был занят конструированием плутониевого устройства, увеличением мощности, снижением веса бомбы, скопированной с американской схемы полученной от советских разведчиков. При этом был найден ряд новых решений, позволивших вдвое улучшить исходные параметры американского образца. Третьей ключевой точкой промышленного изготовления боеприпаса стало сборочное производство, организованное под Заречным Пензенская область.

На загородных закрытых территориях, которые в обиходе назывались «Второе производство», «База оборудования» до 2002 года собирались все устройства разработки Сарова и Снежинска «Челябинск-50». В Заречном, на базе ПО «Старт», работает один из трех российских музеев ядерного оружия. Два других музея открыты в Сарове и Снежинске дублер «Арзамаса-16» был построен под Челябинском в 1957 г. Испытания «РДС-1» кодовое название наземного устройства без авиационной оболочки были проведены на Семипалатинском полигоне в 1949 г. К утру 29 августа устройство было собрано. В 7 утра с пульта руководства была отдана команда на подрыв заряда в 20 килотонн. Подлинный пульт запуска ядерного устройства на первых испытаниях демонстрируется в музее Сарова На полигоне в 170 километрах от областного центра была построена сорокаметровая стальная вышка, По территории полигона концентрическими окружностями разместили несколько тысяч приборов и датчиков излучения. На десятикилометровом круге были построены военные фортификации, гражданские объекты жилые дома, бетонные производственные цеха.

Атомная бомба

  • Непростая бомба
  • Что произойдет после взрыва ядерной бомбы? - Hi-Tech
  • Как это устроено: все секреты термоядерной бомбы
  • Последствия испытания[править | править код]
  • Почему предпочтительнее слияние ядер?

Водородная бомба

3. Водородная бомба: кто выдал её секрет. Оружие, которое себя исчерпало Водородную бомбу можно собрать таким образом, что выгорание каждого из трёх компонентов — плутония, дейтрида лития и обеднённого урана — превысит 90%.
10 стыдных вопросов о ядерном оружии: отвечает физик Дмитрий Побединский Как теперь известно, американская водородная бомба начинает свою историю с 1946 года.
Д.т.н. И.И.Никитчук. Термоядерный прорыв. К истории создания водородной бомбы в СССР Создание же водородной бомбы потребовало появления совершенно новых физических дисциплин: физики высокотемпературной плазмы и сверхвысоких давлений.
Последствия взрыва водородной бомбы | Плюсы и минусы Принцип термоядерной реакции: Водородная бомба использует термоядерную реакцию, при которой происходит слияние легких ядер (обычно изотопов водорода) при высоких температурах и давлениях.
Водородная и атомная бомбы: сравнительные характеристики Работать над созданием водородной бомбы начали сразу после войны в конце 1945 года.

Что произойдет после взрыва ядерной бомбы?

Дальнейшее развитие было направлено на уменьшение размеров конструкции водородных бомб, чтобы обеспечить их доставку к цели баллистическими ракетами. Уже в 60-е годы массу устройств удалось уменьшить до нескольких сотен килограммов, а к 70-м годам баллистические ракеты могли нести свыше 10 боеголовок одновременно - это ракеты с разделяющимися головными частями, каждая из частей может поражать свою собственную цель. На сегодняшний день термоядерным арсеналом обладают США, Россия и Великобритания, испытания термоядерных зарядов были проведены также в Китае в 1967 году и во Франции в 1968 году. Принцип действия водородной бомбы Действие водородной бомбы основано на использовании энергии, выделяющейся при реакции термоядерного синтеза лёгких ядер. Именно эта реакция протекает в недрах звёзд, где под действием сверхвысоких температур и гигантского давления ядра водорода сталкиваются и сливаются в более тяжёлые ядра гелия. Во время реакции часть массы ядер водорода превращается в большое количество энергии - благодаря этому звёзды и выделяют огромное количество энергии постоянно. Учёные скопировали эту реакцию с использованием изотопов водорода - дейтерия и трития, что и дало название «водородная бомба». Изначально для производства зарядов использовались жидкие изотопы водорода, а впоследствии стал использоваться дейтерид лития-6, твёрдое вещество, соединение дейтерия и изотопа лития. Дейтерид лития-6 является основным компонентом водородной бомбы, термоядерным горючим.

В нём уже хранится дейтерий, а изотоп лития служит сырьём для образования трития. Для начала реакции термоядерного синтеза требуется создать высокие температуру и давление, а также выделить из лития-6 тритий.

Ее мощность зависит от размера самой бомбы и той высоты, на которой произошла детонация заряда. Тепловой эффект Водородная бомба всего в 20 мегатонн размеры самой большой испытанной на данный момент бомбы — 58 мегатонн создает огромное количество тепловой энергии: бетон плавился в радиусе пяти километров от места испытания снаряда. В девятикилометровом радиусе будет уничтожено все живое, не устоят ни техника, ни постройки. Диаметр воронки, образованной взрывом, превысит два километра, а глубина ее будет колебаться около пятидесяти метров. Огненный шар Самым зрелищным после взрыва покажется наблюдателям огромный огненный шар: пылающие бури, инициированные детонацией водородной бомбы, будут поддерживать себя сами, вовлекая в воронку все больше и больше горючего материала. Радиационное заражение Но самым опасным последствием взрыва станет, конечно же, радиационное заражение.

Распад тяжелых элементов в бушующем огненном вихре наполнит атмосферу мельчайшими частицами радиоактивной пыли — она настолько легка, что попадая в атмосферу, может обогнуть земной шар два-три раза и только потом выпадет в виде осадков.

Большинство атомных ядер стабильны, но некоторые из них неустойчивы радиоактивны. Эти ядра спонтанно излучают частицы, которые ученые называют радиацией. Этот процесс называется радиоактивным распадом. Бета-распад: нейтрон превращается в протон, электрон и антинейтрино. Выброшенный электрон является бета-частицей. Спонтанное деление: ядро распадается на несколько частей и выбрасывает нейтроны, а также излучает импульс электромагнитной энергии — гамма-луч. Именно последний тип распада используется в ядерной бомбе. Свободные нейтроны, выброшенные в результате деления, начинают цепную реакцию, которая высвобождает колоссальное количество энергии.

Из чего делают ядерные бомбы? Их могут делать из урана-235 и плутония-239. Наиболее распространенный 238U не поддерживает цепную реакцию: на это способен лишь 235U. Поэтому уран приходится искусственно обогащать. Для этого смесь урановых изотопов разделяют на две части так, чтобы в одной из них оказалось больше 235U. Обычно при разделении изотопов остается много обедненного урана, не способного вступить в цепную реакцию — но есть способ заставить его это сделать. Дело в том, что плутоний-239 в природе не встречается. Зато его можно получить, бомбардируя нейтронами 238U. Как измеряется их мощность?

Она измеряется в килотоннах кт и мегатоннах Мт. Мощность сверхмалых ядерных боеприпасов составляет менее 1 кт, в то время как сверхмощные бомбы дают более 1 Мт. Мощность советской «Царь-бомбы» составляла по разным данным от 57 до 58,6 мегатонн в тротиловом эквиваленте, мощность термоядерной бомбы, которую в начале сентября испытала КНДР, составила около 100 килотонн. Кто создал ядерное оружие? Американский физик Роберт Оппенгеймер и генерал Лесли Гровс В 1930-х годах итальянский физик Энрико Ферми продемонстрировал, что элементы, подвергшиеся бомбардировке нейтронами, могут быть преобразованы в новые элементы. Результатом этой работы стало обнаружение медленных нейтронов, а также открытие новых элементов, не представленных на периодической таблице. Вскоре после открытия Ферми немецкие ученые Отто Ган и Фриц Штрассман бомбардировали уран нейтронами, в результате чего образовался радиоактивный изотоп бария. Эта работа взбудоражила умы всего мира. В Принстонском университете Нильс Бор работал с Джоном Уилером для разработки гипотетической модели процесса деления.

Они предположили, что уран-235 подвергается делению. Примерно в то же время другие ученые обнаружили, что процесс деления привел к образованию еще большего количества нейтронов.

Тритий напрямую не используют поскольку он радиоактивный и соответственно долго не хранится.

А литий-6 стабилен, и ядерный заряд всегда готов к бою. Можно использовать и литий-7 — он не только дает тритий, но и еще один лишний нейтрон. Об этой реакции не знали, когда американцы тестировали бомбу «Shrimp» «Креветка».

Существует и схема радиационной имплозии — когда первичный ядерный взрыв рентгеновским излучением обжимает и нагревает отдельную сферу с термоядерным топливом. Линейные ускорители: идея проста — берем мишень из любого удобного дейтерида металла, и в маленьком линейном ускорителе разгоняем до нужной скорости атомы трития. Получаем настоящую термоядерную реакцию, и выходом энергии и 14.

Такой источник можно использовать для поиска нефти и воды например на марсианском ровере MSL стоит российский импульсный источник нейтронов DAN , и в качестве внешнего импульсного нейтронного инициатора в ядерных зарядах. Почему-же так нельзя вырабатывать электричество? На разгон атомов тратится намного больше энергии, чем мы получаем в результате реакции далеко не все разгоняемые атомы реагируют.

Токамак тороидальная камера с магнитными катушками — идея уже немного сложнее, в плазменном торе как в трансформаторе наводим ток. Вокруг тора — сверхпроводящие магниты, которые «обжимают» плазму и не дают ей коснуться стенок. Плазма нагревается микроволновым излучением, и резистивным нагревом от протекающего тока.

Когда начинали работать по этому направлению — казалось: вот-вот и все будет работать. Во всем мире построено порядка 300 токамаков, и самый современный и крупный из них — строящийся международный проект ITER в том числе и при участии России. Водородную плазму то есть без термоядерной реакции собираются зажечь в 2020-м, а начать запуски с дейтерий-тритиевой плазмой — в 2027, если конечно все пойдет по плану и не случится какой-нибудь очередной кризис.

Проблемы у токамаков следующие при их будущем промышленном использовании : Нестабильность плазмы. Разряд норовит где-то становится тоньше, где-то — толще, вплоть до разрыва кольца с прекращением тока или касанием стенок. С проблемой боролись увеличением размеров камеры, добавлением полоидального магнитного поля вокруг вертикальной оси камеры.

Тритий — дорог, и его нужно много для производства энергии. Необходимо использовать размножение нейтронов — используя например литий-7 или свинец, которыми нужно обложить внутреннюю стенку реактора бланкет , и доставать оттуда как-то тритий. Это значит, что если конструкцию реактора сделать из тех же материалов, то срок службы у нее будет 5 лет, а не 50 как у обычных реакторов.

Поскольку плазма с огромной температурой теряет много энергии на излучение, а камера должна быть большой для обеспечения стабильности — минимальная мощность реактора получается большой, сотни мегаватт. Стелларатор — «мятый» бублик, где магнитное поле формируется внешними магнитами очень хитрой формы и обеспечивает стабильность плазмы. По сравнению с токамаком — намного более сложная конструкция.

По «качеству» удержания плазмы сейчас уже уступает токамакам. NIF — National Ignition Facility — идея в том, чтобы сфокусировать свет от 192 импульсных лазеров на мишени, окружающей капсулу с дейтерий-тритиевой смесью.

Как действует водородная бомба и каковы последствия взрыва? Инфографика

Поднимаясь, воздух постепенно охлаждается, становясь похожим на обычное облако из-за конденсации паров воды. Однако это еще не все. Гораздо опаснее для человека ударная взрывная волна, расходящаяся по поверхности земли от эпицентра взрыва по окружности радиусом, достигающим 700 км, и радиоактивные осадки, выпадающие из того самого грибовидного облака. В день на полигонах могли производиться по три-четыре эксперимента, в ходе которых изучалась динамика взрыва, поражающие способности, потенциальный ущерб противника. Первый опытный образец был взорван 27 августа 1949 года, а последнее испытание ядерного оружия в СССР произвели 25 декабря 1962-го. Все испытания проходили в основном на двух полигонах — на Семипалатинском полигоне или "Сияпе", расположенном на территории Казахстана, и на Новой земле, архипелаге в Северном Ледовитом океане. Там осуществили взрыв заряда мощностью 10,4 мегатонны, что в 450 раз превышало мощность бомбы "Толстяк", сброшенной на Нагасаки.

Впрочем, называть это устройство бомбой в прямом смысле слова нельзя. Это была конструкция с трехэтажный дом, заполненная жидким дейтерием. А вот первое термоядерное оружие в СССР было испытано в августе 1953 года на Семипалатинском полигоне. Это была уже настоящая бомба, сброшенная с самолета.

В атомной же энергия получается от деления атомного ядра, поэтому взрыв атомной бомбы намного слабее. Первое испытание И Советский Союз вновь опередил многих участников гонки холодной войны. Первую водородную бомбу, изготовленную под руководством гениального Сахарова, испытали на секретном полигоне Семипалатинска — и они, мягко говоря, впечатлили не только ученых, но и западных лазутчиков. Ударная волна Прямое разрушительное воздействие водородной бомбы — сильнейшая, обладающая высокой интенсивностью ударная волна.

Ее мощность зависит от размера самой бомбы и той высоты, на которой произошла детонация заряда. Тепловой эффект Водородная бомба всего в 20 мегатонн размеры самой большой испытанной на данный момент бомбы — 58 мегатонн создает огромное количество тепловой энергии: бетон плавился в радиусе пяти километров от места испытания снаряда. В девятикилометровом радиусе будет уничтожено все живое, не устоят ни техника, ни постройки.

Работы проводились в условиях жесточайшего режима секретности: часовыми у здания «ДАФ», где готовилась бомба, были офицеры КГБ в чине не ниже капитана, а при вывозе бомбы на аэродром статус часовых поднимался до полковника. Относительно режима секретности показателен следующий эпизод. Начальник отдела КБ-11 по разработке специальной оснастки для сборки и снаряжения ядерного заряда И. Калашников, услышав по радио, что в СССР успешно проведены испытания водородной бомбы, находясь около аналогичной бомбы в здании «ДАФ», посетовал, что где-то еще проводятся более серьезные испытания, а мы и не знаем. На что зам. Негин ответил: «А ты за что держишься? Общий хохот присутствующих обескуражил И.

Наконец, бомбу «изделие РДС-37» подготовили, сброс был намечен на 20 ноября 1955 г. Все операции на аэродроме были закончены, и примерно в 8 часов утра самолет-носитель взлетел с Семипалатинского аэродрома расположенного в пригороде Жана-Семей на левом берегу Иртыша и взял курс на боевое «опытное» поле. Но из-за испортившейся погоды цель, обозначенная на земле большим белым крестом в круге, в оптическом прицеле оказалась не видна. Тешили воспользоваться радиолокационным прицелом, реагирующим на отраженный сигнал от специальных металлических отражателей, установленных в районе цели. Однако радиоприцел оказался неисправным и не «увидел» уголковых отражателей. Создалась критическая ситуация: - с подобными бомбами со снятой первой ступенью предохранения правда там оставалось еще четыре! Безусловно, выполнение инструкции было чревато большими материальными и временными потерями бомбу пришлось бы изготавливать повторно. Харитон, посоветовавшись с И. Курчатовым и получив заверения от командира экипажа самолета-носителя, летчика первого класса майора В. Головашко, не сомневавшегося в обеспечении качественной посадки самолета на Семипалатинском аэродроме, принял решение: сажать самолет с бомбой.

Что и было выполнено экипажем блестяще. Для сокращения пробега на взлетно-посадочной полосе был применен самолетный тормозной парашют. В целях исключения подобных случаев далее «на боевом курсе» работали 2 самолета: «ведущий» и «ведомый» самолет-носитель. Бомбу сняли, провели повторно проверки всех ее приборов, агрегатов и узлов. В кругу ученых ядерщиков ее назвали «настоящая водородная». Результаты испытаний Мощность термоядерного взрыва с использованием 3-х разных методик была оценена в 1,7 Мегатонн в 4,5 раза более РДС-6С при тех же массогабаритных характеристиках ; - вся боевая техника, выставленная на опытном поле полигона, была разрушена, самолеты отброшены на 200-500 м, средние и тяжелые танки были отброшены и опрокинуты вверх гусеницами; - боевая фортификация ДОТы, ДЗОТы, укрепленные деревом траншеи обрушились и сгорели ; - промышленные и жилые дома были разрушены полностью, стальной железнодорожный мост был отброшен на 200 м и исковеркан. Пострадал и тоннель метро. Случились также и непредвиденные разрушения: - на Семипалатинском мясокомбинате втором по масштабам продукции после Микояновского в Москве , расположенного в 270 км от точки взрыва, вылетели все стекла, а его недельная продукция пошла в утиль; - по узкому сектору ударная волна достаточной силы достигла Павлодара, удаленного примерно на 400 км от эпицентра взрыва, создав там панику; - основная площадка «М» Семипалатинского полигона жилой городок, ныне город Курчатов , расположенная в 70 км от эпицентра, подверглась нескольким ударным волнам, сбивавшим с ног людей, что было зафиксировано в научно-историческом фильме. Стало очевидным, что дальнейшие испытания ядерных зарядов мегатонного класса на Семипалатинском полигоне неприемлемы, поэтому с 1956 г. Итоги Разработка первого двухступенчатого термоядерного заряда на принципе радиационной имплозии стало ключевым этапом развития ядерной оружейной программы СССР.

За творческий и научный вклад в эту разработку ряд специалистов КБ-11 были удостоены звания Героя Социалистического Труда в том числе, третьей Звездой Героя были награждены академики И.

Очевидно, в конце октября. В заключение, вероятно, взорвем водородную бомбу мощностью в 50 миллионов тонн тротила.

Мы говорили, что имеем бомбу в 100 миллионов тонн тротила. И это верно. Но взрывать такую бомбу мы не будем".

Генеральная ассамблея ООН приняла 27 октября 1961 г. Ту-95В с экипажем из девяти человек ведущий летчик - Андрей Дурновцев, ведущий штурман - Иван Клещ вылетел с военного аэродрома Оленья на Кольском полуострове. Сброс авиабомбы был осуществлен с высоты 10,5 км на площадку Северного острова архипелага, в районе пролива Маточкин Шар.

Взрыв произошел на высоте 3,7 км от земли и 4,2 км над уровнем моря, на 188 сек. Вспышка длилась 65-70 сек. Облако долго сохраняло свою форму и было видно на расстоянии нескольких сотен километров.

Несмотря на сплошную облачность, световая вспышка наблюдалась на расстоянии более 1 тыс. Ударная волна трижды обогнула земной шар, из-за электромагнитного излучения на 40-50 мин. Радиоактивное загрязнение в районе эпицентра оказалось небольшим 1 миллирентген в час поэтому исследовательский персонал смог работать там без опасности для здоровья через 2 часа после взрыва.

По оценкам специалистов, мощность супербомбы составила около 58 мегатонн в тротиловом эквиваленте. Это примерно в три тысячи раз мощнее атомной бомбы, сброшенной США на Хиросиму в 1945 г.

Водородная бомба - состав и принцип действий

Пресловутая американская бомба В61 является термоядерной, или как их еще не совсем правильно, но часто, называют – водородной. ВОДОРОДНАЯ БОМБА, оружие большой разрушительной силы (порядка мегатонн в тротиловом эквиваленте), принцип действия которого основан на реакции термоядерного синтеза легких ядер. Термоядерная (водородная) бомба — также достаточно проста по конструкции. Водородная бомба. Ещё сильнее разрушительную силу современных ядерных боеприпасов можно повысить капсулой с термоядерным горючим. «взрывает» реакция неуправляемого термоядерного синтеза.

Что такое реакция слияния ядер?

  • Следующие этапы советской программы
  • 10 стыдных вопросов о ядерном оружии: отвечает физик Дмитрий Побединский - Лайфхакер
  • Водородная и атомная бомбы: сравнительные характеристики
  • Последствия применения водородной бомбы
  • Водородная бомба

Водородная бомба

Подготовка к испытанию "Царь-бомбы" АН602 было решено испытать в конце октября 1961 года на полигоне на Новой Земле. Супербомбу собирали в первом советском ядерном центре, родине отечественного ядерного оружия Конструкторском бюро — 11 в Арзамасе-16, прямо на специальной железнодорожной платформе. Для этого даже пришлось проложить железнодорожную ветку внутрь цеха. В двадцатых числах октября вагон с бомбой выглядевший снаружи как совершенно обычный вагон в составе литерного поезда под усиленной охраной отправился к месту своего назначения — станции Оленьей на Кольском полуострове. Тот поезд состоял из нескольких вагонов, расположенных спереди и сзади вагона с бомбой. Любые неожиданности были исключены.

Маршрутные документы несколько раз менялись для того, чтобы невозможно было определить ни станцию отправления, ни пункт назначения. На станции Оленьей бомба прошла тщательный контроль и была приведена в боевое положение. Испытание "Царь-бомбы" Для испытания "Царь-бомбы" подготовили специальную парашютную систему и самолет. Габариты изделия поражали воображение: длина — около 8 метров, диаметр — 2,1 метра, вес — 26 тонн. Для того чтобы поместить бомбу в Ту-95, конструкторам пришлось вырезать часть корпуса стратегического бомбардировщика и установить в нем специальное крепление.

Но даже при этом "Царь-бомба" наполовину торчала из самолета. Самолет-носитель сопровождал самолет-лаборатория Ту-16А. Через два часа после вылета бомбу сбросили с парашютом на высоте примерно 10 тысяч метров в пределах ядерного полигона "Сухой Нос".

Выяснить, каких результатов достигли американцы, разведчики не смогли, да и попытки советских ядерщиков не увенчались успехом. Поэтому было решено создать бомбу, взрыв которой происходил бы за счет синтеза легких ядер, а не деления тяжелых, как в атомной бомбе. Весной 1950 года начались работы над созданием бомбы, получившей в дальнейшем название РДС-6с. В числе ее разработчиков оказался и будущий лауреат Нобелевской премии мира Андрей Сахаров, предложивший идею конструкции заряда еще в 1948 году, но позднее выступавший против ядерных испытаний. Впоследствии, правда, дейтерий предложили заменить на дейтерид лития — это значительно упростило конструкцию заряда и его эксплуатацию. Дополнительным преимуществом было то, что из лития после бомбардировки нейтронами получается еще один изотоп водорода — тритий.

Вступая в реакцию с дейтерием, тритий выделяет гораздо больше энергии. К тому же литий еще и замедляет нейтроны лучше.

Наиболее очевидное из прямых воздействий — это ударная волна огромной интенсивности. Сила ее воздействия, зависящая от мощности бомбы, высоты взрыва над поверхностью земли и характера местности, уменьшается с удалением от эпицентра взрыва. Тепловое воздействие взрыва определяется теми же факторами, но, кроме того, зависит и от прозрачности воздуха — туман резко уменьшает расстояние, на котором тепловая вспышка может вызвать серьезные ожоги. Площадь, на которой возникающее во время взрыва проникающее излучение вызывает летальный исход, сравнительно невелика даже в случае супербомбы высокой мощности.

Однако зачастую в составе термоядерной бомбы есть ядерная бомба, которая и приводит к радиационному загрязнению, хоть и меньшему. Если подытожить: атомная и ядерная бомба — это одно и то же; в атомных бомбах используются реакции тяжёлых элементов, в термоядерных — лёгких; наращивать мощность термоядерных бомб легче, чем атомных; при ядерном и термоядерном взрыве одинаковой мощности меньшее радиационное загрязнение будет во втором случае. Как ядерное оружие активизируют и направляют к цели? В радиоактивном веществе, которое содержится внутри атомной бомбы, реакция деления идёт постоянно в тлеющем режиме. Однако энергии, выделяющейся при этом, недостаточно, чтобы произошёл большой взрыв. Сделать так, чтобы процесс пошёл активнее, можно. Для этого реакция деления должна быть цепной и самоподдерживающейся — то есть чтобы разрыв одной связи между частицами ядра провоцировал разрыв другой, и так далее по нарастающей. Тогда это лавинообразное воздействие за микродоли секунды приведёт к высвобождению большого количества энергии и, соответственно, взрыву. Существует такое понятие, как критическая масса — минимальная масса вещества, необходимая для начала цепной реакции деления.

То есть, чтобы бомба взорвалась, необходимо превысить критическую массу. То есть если критическая масса равна 10 кг, а каждый брусок весит по 6 кг, то, соединив их, мы получим брусок весом 12 кг, что превысит критическую массу, и начнётся цепная ядерная реакция. Так, например, сделали создатели первой бомбы «Малыш», которую сбросили на Хиросиму. Шар, который имеет массу меньше критической, окружают взрывчаткой и создают направленный взрыв. Ударная волна сжимает этот шар, его плотность увеличивается. Масса для этой новой плотности становится выше критической, запускается реакция. Этот способ называется имплозивным, его применили для активации «Толстяка», сброшенного на Нагасаки, а также для «Гаджета» — самой первой бомбы, взорванной в пустыне США. В фильме «Оппенгеймер» показан этот момент. Как бомбу направляют к цели — вопрос аэродинамики и космической баллистики.

Сейчас существуют баллистические ракеты с ядерными или термоядерными боеголовками, которые запускают в воздух как космические ракеты, но на орбиту они не выходят. Вместо этого — начинают по определённой, заранее рассчитанной траектории падать к цели. Что происходит после взрыва? После того как бомба взорвалась, сначала выделяется много светового излучения, которое сжигает всё в определённом радиусе. Эта вспышка такой силы, что её можно сравнить с излучением от звезды в космосе. Поэтому всё, что находится в эпицентре, моментально сгорает. Затем доходит ударная волна. Она движется со скоростью выше скорости звука, но ниже скорости света, сметая всё на своём пути: разрушает постройки, выкорчёвывает деревья, переворачивает машины. Параллельно с этим местность загрязняется радиацией.

Люди заболевают лучевой болезнью, у них и их потомков повышается риск онкологических заболеваний. Растения и животные мутируют.

Уроки водородной бомбы для мирного термоядерного синтеза

Мощность взорванного снаряда не сообщается. Это испытание совпало с 66-й годовщиной первого подземного ядерного испытания в Неваде, свершившегося 19 октября 1957 года. Любопытно, что тогда США также заявляли, что проводят испытания с целью «обеспечить, чтобы ядерное оружие не использовалось в будущем». Военный эксперт Дмитрий Стефанович предположил , что переход к активной ядерной риторике со стороны России призван прежде всего продемонстрировать миру, что в ядерной войне Россия не проиграет. Однако он выразил уверенность, что реальное развязывание ядерной войны не выгодно ни одному из государств мира и Россия не исключение, поэтому подобные демонстративные шаги как раз призваны не допустить такого исхода международной напряжённости. Что же до испытаний США, по мнению Дмитрия Стефановича, подземный взрыв в пустыне Невада может быть предупреждением России о невозможности скрыть потенциальные ядерные испытания, если та вздумает их проводить. Но вряд ли его «подгоняли» ко дню рассмотрения законопроекта об отзыве ДВЗЯУ, так как такие испытания планируются и готовятся заранее. А вот российский сенатор Константин Косачёв призвал обратить на проведённые испытания в Неваде внимание Технического секретариата ДВЗЯИ и потребовать публичной международно-правовой оценки. По его мнению, США нарушили принцип добросовестного следования положениям подписанного ими договора, который, согласно международному праву, должен соблюдаться даже до ратификации. Да и в принципе в Совете Федерации не поверили в «совпадение» и склонны рассматривать этот шаг США как провокацию и попытку «раззадорить» Россию, у которой теперь, с дератификацией договора и подобным прецедентом, «развязаны руки». Наверное, они нуждаются в проверке.

Если политическое и военное руководство примет решение о проведении испытаний, я думаю, это будет воспринято нормально и с пониманием», — заметил сенатор Владимир Джабаров.

Все дело в различной критической массе ядерного топлива , а также в различии процессов высвобождения энергии. В ядерной бомбе процесс начинается после детонации заряда, расположенного внутри атомной бомбы, в которой находится уран или плутоний. После мини-взрыва, который приводит к детонации, изотопы начинают распадаться, захватывая нейтроны. Начинается цепной процесс деления атомных ядер. После разрушения структуры атомов происходит ядерное возбуждение энергии с момента, когда ядерный заряд достигнет критической отметки. Это и приводит к ядерному взрыву. Водородная бомба основана на совершенно ином процессе высвобождения энергии. Для начала в водородной бомбе начинается процесс расщепления тяжелых ядер дейтерида лития-6, который распадается на тритий и гелий.

И только потом происходит процесс термоядерного синтеза, что приводит к резкому нагреву боевого заряда с последующим мощнейшим взрывом. Теоретически максимальный верхний предел мощности атомной бомбы, которую люди в настоящий момент могут изготовить, составляет около 800 000 тонн в тротиловом эквиваленте. Но такую бомбу никто не делает, так как мощность в 500 000 тонн — уже вершина безумия. Кстати, ядерное топливо уран-235, который используется в атомной бомбе, делится не полностью. Например, атомная бомба, сброшенная американцами на Хиросиму, Япония, содержала 60 килограммов урана-235. Но успешному делению подверглось только 700 граммов топлива.

Расчёты показали, что разлёт не прореагировавшего материала препятствует увеличению мощности свыше 750 килотонн. После проведения США испытания « Иви Майк » в ноябре 1952, которые доказали возможность создания мегатонных бомб, Советский Союз стал разрабатывать другой проект. Как упоминал в своих мемуарах Андрей Сахаров, «вторая идея» была выдвинута Харитоном ещё в ноябре 1948 года и предлагала использовать в бомбе дейтерид лития, который при облучении нейтронами образует тритий и высвобождает дейтерий. В конце 1953 года физик Виктор Давиденко предложил располагать первичный деление и вторичный синтез заряды в отдельных объёмах, повторив таким образом схему Теллера — Улама. Следующий большой шаг был предложен и развит Франк-Каменецким , Трутневым , Сахаровым и Зельдовичем в 1953 году. А именно, был выполнен «Проект 49», предполагающий использование рентгеновского излучения реакции деления для сжатия дейтерида лития перед синтезом, то есть была разработана идея радиационной имплозии. Дальнейшее развитие этой идеи подтвердило практическое отсутствие принципиальных ограничений на мощность термоядерных зарядов. Советский Союз продемонстрировал это испытаниями в октябре 1961 года, когда на Новой Земле была взорвана бомба мощностью 58 мегатонн «мощного» изделия [12] , доставленная бомбардировщиком Ту-95. Однако такой вариант отвергли, так как он бы привёл к сильнейшему загрязнению полигона осколками деления, и урановая оболочка была заменена на свинцовую [8]. Это было самое мощное взрывное устройство, когда-либо разработанное и испытанное на Земле. Великобритания[ править править код ] В Великобритании разработки термоядерного оружия были начаты в 1954 году в Олдермастоне группой под руководством сэра Уильяма Пеннея, ранее участвовавшего в Манхэттенском проекте в США. В целом информированность британской стороны по термоядерной проблеме находилась на зачаточном уровне, так как Соединённые Штаты не делились информацией, ссылаясь на закон об Атомной энергии 1946 года. Тем не менее британцам разрешали вести наблюдения, и они использовали самолёт для отбора проб в ходе проведения американцами ядерных испытаний , что давало информацию о продуктах ядерных реакций, получавшихся во вторичной стадии лучевой имплозии. Из-за этих трудностей в 1955 британский премьер-министр Энтони Иден согласился с секретным планом, предусматривавшим разработку очень мощной атомной бомбы в случае неудачи Олдермастонского проекта или больших задержек в его реализации. В 1957 году Великобритания провела серию испытаний на островах Рождества в Тихом океане под общим наименованием «Operation Grapple» Операция Схватка. Первым под наименованием «Short Granite» Хрупкий Гранит было испытано опытное термоядерное устройство мощностью около 300 килотонн, оказавшееся значительно слабее советских и американских аналогов. Тем не менее, британское правительство объявило об успешном испытании термоядерного устройства. В ходе испытания «Orange Herald» Оранжевый вестник была взорвана усовершенствованная атомная бомба мощностью 700 килотонн — самая мощная из когда-либо созданных на Земле атомных не термоядерных бомб.

Ту-95В с экипажем из девяти человек ведущий летчик - Андрей Дурновцев, ведущий штурман - Иван Клещ вылетел с военного аэродрома Оленья на Кольском полуострове. Сброс авиабомбы был осуществлен с высоты 10,5 км на площадку Северного острова архипелага, в районе пролива Маточкин Шар. Взрыв произошел на высоте 3,7 км от земли и 4,2 км над уровнем моря, на 188 сек. Вспышка длилась 65-70 сек. Облако долго сохраняло свою форму и было видно на расстоянии нескольких сотен километров. Несмотря на сплошную облачность, световая вспышка наблюдалась на расстоянии более 1 тыс. Ударная волна трижды обогнула земной шар, из-за электромагнитного излучения на 40-50 мин. Радиоактивное загрязнение в районе эпицентра оказалось небольшим 1 миллирентген в час поэтому исследовательский персонал смог работать там без опасности для здоровья через 2 часа после взрыва. По оценкам специалистов, мощность супербомбы составила около 58 мегатонн в тротиловом эквиваленте. Это примерно в три тысячи раз мощнее атомной бомбы, сброшенной США на Хиросиму в 1945 г. Съемка испытания велась как с земли, так и с борта Ту-95В, который на момент взрыва успел отойти на расстояние более 45 км, а также с самолета Ил-14 на момент взрыва был на расстоянии 55 км. После продолжительных переговоров 5 августа 1963 г. С момента его вступления в силу СССР производил только подземные ядерные испытания. Последний взрыв был проведен 24 октября 1990 г. В настоящее время этого моратория придерживается и Россия. Восьми сотрудникам КБ-11 присвоено звание Героя Социалистического Труда из них Андрей Сахаров получил его в третий раз , 40 сотрудников стали лауреатами Ленинской премии.

Публикации

  • 3. Водородная бомба: кто выдал её секрет. Оружие, которое себя исчерпало
  • Последствия взрыва водородной бомбы
  • Водородная против атомной. Что нужно знать о ядерном оружии | Futurist - будущее уже здесь
  • Д.т.н. И.И.Никитчук. Термоядерный прорыв. К истории создания водородной бомбы в СССР
  • "Царь-бомба": как самое мощное оружие спасло мир — 05.04.2023 — Статьи на РЕН ТВ
  • Литературные дневники / Проза.ру

Похожие новости:

Оцените статью
Добавить комментарий